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Abstract
We derive explicit spin and charge correlation functions of the N ×N Hubbard
model from a recently obtained weak-coupling analytic ground state |� [0]

AF 〉.
The spin correlation function shows an antiferromagnetic behaviour with
different signs for the two sublattices and its Fourier tranform is peaked at
Q = (π, π). The charge correlation function presents two valleys at 45◦ from
the axes. Both functions behave in a smooth way with increasing N ; the results
agree well with the available numerical data.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Let us consider the Hubbard model with Hamiltonian

H = H0 + Ŵ = t
∑

σ

∑
〈r,r′〉

c†
rσ cr′σ +

∑
r

Un̂r↑n̂r↓, U > 0, (1)

on a bipartite square lattice � = A ∪ B of N × N sites with periodic boundary conditions and
even N . Here σ = ↑, ↓ is the spin and r, r′ the spatial degrees of freedom of the creation and
annihilation operators c† and c respectively. The sum on 〈r, r′〉 is over the pairs of nearest-
neighbour sites and n̂rσ is the number operator on site r of spin σ . The point symmetry is C4v,
the group of a square1; besides, H is invariant under the commutative group of translations
1 C4v is the symmetry group of a square. It is a finite group of order eight and it contains four one-dimensional irreps,
A1, A2, B1, B2, and one two-dimensional one called E. The table of characters is

C4v 1 C2 C(+)
4 , C(−)

4 σx, σy σ ′
x , σ ′

y

A1 1 1 1 1 1
A2 1 1 1 −1 −1
B1 1 1 −1 1 −1
B2 1 1 −1 −1 1
E 2 −2 0 0 0
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T and hence under the space group G = T ⊗ C4v; ⊗ means the semidirect product. The
presence of spin and pseudospin symmetries [1] leads to SO(4) group [2, 3]; below, we shall
work in the subspace of vanishing spin and pseudospin. We represent sites by r = (x, y) and
wavevectors by k = (kx, ky) = (2π/N)(x, y), with x, y = 0, . . . , N − 1. In terms of the
Fourier expanded fermion operators ckσ = (1/N)

∑
r eik·rcrσ , we have H0 = ∑

k ε(k)c
†
kσ ckσ

with ε(k) = 2t[cos kx + cos ky]. Then the one-body plane wave state c
†
kσ |0〉 ≡ |kσ 〉 is an

eigenstate of H0.
The N × N Hubbard model at half filling is not elementary, even in the innocent-looking

case of finite N and small repulsion U . Indeed, weak-coupling expansions have long been

known to be highly informative [4, 5]. The reason is that the trivial U = 0 case is
(

2N − 2
N − 1

)2

times degenerate, and so even for relatively small lattices one has to solve a big secular problem
to see how the interaction resolves the degeneracy in first order. To deal with this problem,
recently [6, 7] we have proposed a local formalism, based on diagonalizing the occupation
number operators in the degenerate eigenstates of the kinetic energy H0. We came out with
an analytic singlet wavefunction |�[0]

AF 〉 which solves the secular problem and belongs to the
ground eigenvalue of H . Under a lattice step translation it just flips spins (antiferromagnetic
property). Further we proved that it has vanishing momentum and its point symmetry is the
same as the ground-state symmetry established by Moreo and Dagotto [8].

We believe that |� [0]
AF 〉 clearly deserves further study: although it is an eigenstate only at

the first order in U , it must represent a good many of the properties of the full ground state.
Here we wish to show that the same local formalism that allows one to build |� [0]

AF 〉 is also
suitable to bring out some physics. It is clear that the importance of analytic results is actually
enhanced in the age of computers, since they can benchmark the numerical approximations.

The correlation functions are a popular tool to understand and visualize the structure and
the physical properties of a given many-body state. The definitions are

Gcharge(r) ≡ 〈� [0]
AF |n̂rn̂0|� [0]

AF 〉 (2)

for the charge correlation function and

Gspin(r) ≡ 〈� [0]
AF |Ŝr · Ŝ0|� [0]

AF 〉 (3)

for the spin one. Here n̂r is the number operator and Ŝr is the spin vector operator at site r;
the subscripts 0 denote the site at the origin.

Studies [9] of correlation functions in the three-band Hubbard model were aimed at
the characterization of possible pairing mechanisms shortly after the discovery of high-Tc

superconductivity [10]. Much of the early work dealt with the one-band model at strong
coupling. Let us mention the exact diagonalization study by Kaxiras and Manousakis [11] on
the

√
10 × √

10 lattice, showing the antiferromagnetic order at half filling; the diagrammatic
approach by Gebhard and Vollhardt [12] used the Gutzwiller ansatz, mainly for the one-
dimensional chain. Correlation functions on larger lattices of the one-band [13], and, more
recently, of the three-band Hubbard model [14, 15] have been obtained by quantum–Monte
Carlo methods. They have also been used to benchmark the self-consistent theory by Vilk
et al [16], which is basically a generalized random-phase approximation.

After summarizing the local formalism and the ground-state solution in section 2, we
go over in section 3 to a new picture by a particle–hole canonical transformation which is
convenient to calculate the correlation functions. We derive the spin correlation function in
section 4 and the charge one in section 5. The results are discussed and compared with available
data in section 6.



Analytic correlation functions of the two-dimensional half-filled Hubbard model at weak coupling 2655

2. The ground state at weak coupling

In order to establish some notations we need to review the ground-state formalism [6, 7]. Let
Shf denote the set (or shell) of the k wavevectors such that ε(k) = 0. At half filling (N2

particles) for U = 0 the Shf shell is half occupied, while all |k〉 orbitals such that ε(k) < 0
are filled. The k vectors of Shf lie on the square having vertices (±π, 0) and (0, ±π); one
readily realizes that the dimension of the set Shf is |Shf | = 2N − 2. Since N is even and H

commutes with the total spin operators,

Ŝz = 1
2

∑
r

(n̂r↑ − n̂r↓), Ŝ+ =
∑

r

c
†
r↑cr↓, Ŝ− = (Ŝ+)†, (4)

at half filling every ground state of H0 is represented in the Ŝz = 0 subspace. Thus, H0 has(
2N − 2
N − 1

)2
degenerate unperturbed ground-state configurations with Ŝz = 0.

It can be shown [6] that the structure of the first-order wavefunctions is gained by
diagonalizing Ŵ in the truncated Hilbert space H spanned by the states of N − 1 holes
of each spin in Shf . In other terms, one solves a (2N − 2)-particle problem in the truncated
Hilbert space H and then, understanding the particles in the filled shells, obtains the first-order
eigenfunctions of H in the full N2-particle problem. We emphasize that the matrix of H0 in
H is null, since by construction H is contained in the kernel of H0.

The large set Shf breaks into small pieces if we take full advantage of the G symmetry.
Any plane-wave state k belongs to a one-dimensional irrep of T ; moreover, it also belongs to a
star of k vectors connected by operations of C4v, and one member of the star has kx � ky � 0.
We recall that any k ∈ Shf lies on a square with vertices on the axes at the Brillouin zone
boundaries. Choosing an arbitrary k ∈ Shf with kx � ky � 0, hence kx + ky = π , the set of
vectors Rik ∈ Shf , where Ri ∈ C4v, is a basis for an irrep of G. The high-symmetry vectors
kA = (π, 0) and kB = (0, π) are the basis of the only two-dimensional irrep of G, which exists
for any N . If N/2 is even, one also finds the high-symmetry wavevectors k = (±π/2, ±π/2)

which mix among themselves under C4v operations and yield a four-dimensional irrep. In
general, when k is not in a special symmetry direction, the vectors Rik are all different, so all
the other irreps of G have dimension eight, the number of operations of the point group C4v.

Below, we shall need the number of these irreps. Since eight times the number of eight-
dimensional irreps plus four times that of four-dimensional ones plus two for the only two-
dimensional irrep must yield |Shf | = 2N − 2, one finds that Shf contains Ne = 1

2 (N/2 − 2)

irreps of dimension eight if N/2 is even and No = 1
2 (N/2 − 1) irreps of dimension eight if

N/2 is odd.
In this way, Shf is seen to be the union of disjoint bases of irreps of the space group. This

break-up of Shf enables us to define a real symmetry-adapted one-body local basis which
allows us to carry on the analysis for any N .

The one-body local basis is obtained by projecting onto the irreps of C4v the |k〉 states of
Shf that belong to a given irrep of G. As already noted, kA = (π, 0) and kB = (0, π) belong
to Shf and are the basis of a two-dimensional irrep of G. Let

|ψ ′′
A1

〉 = 1√
2

(|kA〉 + |kB〉), |ψ ′′
B1

〉 = 1√
2

(|kA〉 − |kB〉) (5)

be the first two real states of the local basis. As the notation implies, both are simultaneously
eigenvectors of the Dirac characters of C4v and carry symmetry labels; actually the symmetries
are A1 and B1 because the two-dimensional irrep of G breaks into A1⊕B1 in C4v. In G these two
functions merge into one irrep because the k states pick up phase factors from the translations.

For even N/2, Shf also comprises the basis wavevectors k1 = (π/2, π/2), k2 =
(−π/2, π/2), k3 = (π/2, −π/2), k4 = (−π/2, −π/2) of the four-dimensional irrep of G.
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This irrep breaks into A1 ⊕B2 ⊕E in C4v. Letting I = 1, 2, 3, 4 for the irreps A1, B2, Ex, Ey

respectively, we can write down four more real local states

|ψ ′
I 〉 =

4∑
i=1

O ′
I i |ki〉, (6)

where O ′ is the 4 × 4 unitary matrix which performs the projections, namely,

O ′ = 1
2




1 1 1 1
1 −1 −1 1
i −i i −i
i i −i −i


 . (7)

For N > 4, Shf also contains k vectors that are away from special symmetry directions. These
form eight-dimensional irreps of G since Rik are all different for all Ri ∈ C4v. In other
terms, any eight-dimensional irrep of G is the regular representation of C4v. Thus, by the
Burnside theorem, it breaks into A1 ⊕ A2 ⊕ B1 ⊕ B2 ⊕ E ⊕ E, with the two-dimensional irrep
occurring twice; these are the symmetry labels of the local orbitals we are looking for. Let
k[m] = (k[m]

x , k[m]
y ) with k[m]

x � k[m]
y � 0 be a wavevector of the mth eight-dimensional irrep of

G and let Ri, i = 1, . . . , 8 denote respectively the identity 1, the anticlockwise and clockwise
90◦ rotation C(+)

4 , C(−)
4 , the 180◦ rotation C2, the reflection with respect to the y = 0 and

x = 0 axis σx, σy and the reflection with respect to the x = y and x = −y diagonals σ ′
x, σ ′

y .
We write down real local basis states as

|ψ [m]
I 〉 =

8∑
i=1

OIi |Rik
[m]〉, (8)

where O is the 8 × 8 unitary matrix

O = 1√
8




1 1 1 1 1 1 1 1
1 −1 −1 1 −1 −1 1 1
i i −i −i i −i −i i
i −i i −i −i i −i i
1 1 1 1 −1 −1 −1 −1
1 −1 −1 1 1 1 −1 −1
i −i i −i i −i i −i
i i −i −i −i i i −i




. (9)

Here, denoting by E′ the second occurrence of the irrep E, I = 1, . . . , 8 is the A1, B2, Ex , Ey ,
A2, B1, E′

x , E′
y irrep respectively.

Now let us consider the following determinantal state:

|)AF 〉σ ≡
∣∣∣∣
( Ne∏

m=1

ψ
[m]
A1

ψ
[m]
B2

ψ
[m]
Ex

ψ
[m]
Ey

)
ψ ′

A1
ψ ′

B2
ψ ′′

A1

〉
σ

⊗
∣∣∣∣
( Ne∏

m=1

ψ
[m]
A2

ψ
[m]
B1

ψ
[m]
E′

x
ψ

[m]
E′

y

)
ψ ′

Ex
ψ ′

Ey
ψ ′′

B1

〉
−σ

(10)

for even N/2 and

|)AF 〉σ ≡
∣∣∣∣
( No∏

m=1

ψ
[m]
A1

ψ
[m]
B2

ψ
[m]
Ex

ψ
[m]
Ey

)
ψ ′′

A1

〉
σ

⊗
∣∣∣∣
( No∏

m=1

ψ
[m]
A2

ψ
[m]
B1

ψ
[m]
E′

x
ψ

[m]
E′

y

)
ψ ′′

B1

〉
−σ

(11)

for odd N/2, with σ = ↑, ↓. In [6, 7] we have shown the following.
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• |)AF 〉σ is an eigenstate of Ŵ with vanishing eigenvalue (W = 0 state).
• Under a lattice step translation |)AF 〉σ → −|)AF 〉−σ . Therefore, it manifestly shows an

antiferromagnetic order (antiferromagnetic property).
• Introducing the projection operator PS on the spin S subspace, one finds that PS |)AF 〉σ ≡

|)[S]
AF 〉 �= 0, ∀S = 0, . . . , N − 1. Then, 〈)AF |Ŵ |)AF 〉 = ∑N−1

S=0 〈)[S]
AF |Ŵ |)[S]

AF 〉 = 0,
and this implies that there is at least one W = 0 state of Ŵ in H for each S. By the Lieb
theorem [1], only the singlet component |)[0]

AF 〉 belongs to the ground-state multiplet of
H at weak coupling (filled shells are understood, of course).

• |)[0]
AF 〉 has vanishing total momentum and is even under reflections, while the point

symmetry is s or d for even or odd N/2, respectively. These are the correct quantum
numbers of the interacting ground state at half filling [8].

• The ground-state interaction energy per site is

EU ≡ 〈)[0]
AF |Ŵ |)[0]

AF 〉
N2

= U

4
− U

(N − 1)2

N4
. (12)

Thus the linear term of the expansion of the energy per site in powers of U increases
monotonically with N towards the infinite square lattice value U/4.

Finally we emphasize that in |)[0]
AF 〉 only 2N − 2 particles are antiferromagnetically

correlated while in the strong-coupling limit all the N2 particles show antiferromagnetic
correlations.

|)[0]
AF 〉 is an exact ground state of H for U → 0. Does this mean that it is the U → 0 limit

of the unique interacting ground state? We know that this is the case for the 4 × 4 and 6 × 6
square lattices, where we have numerical evidence that |)[0]

AF 〉 is the only singlet eigenstate
in H with vanishing eigenvalue. The correlation functions that we find below behave quite
reasonably also for N > 6 and this strongly suggests that |)[0]

AF 〉 continues to be a good approx-
imation to the true ground state at weak coupling. A proof of the uniqueness of the vanishing
eigenvalue of Ŵ in the singlet subspace of H would be sufficient (although not necessary)
to prove this. In the next section we find further evidence to support this proposal: we write
|)[0]

AF 〉 in the particle–hole transformed picture and show that the corresponding Lieb matrix
is positive semidefinite, as it should be for a genuine ground state [1].

3. The ground state in the particle–hole transformed picture

The unitary particle–hole transformation on a square N × N lattice and even N reads

cr↓ = dr↓
cr↑ = (−)x+yd

†
r↑,

r = (x, y). (13)

This transformation maps the repulsive Hubbard model described in equation (1) onto the
attractive one

H = t
∑

σ

∑
〈r,r′〉

d†
rσ dr′σ −

∑
r

Un̂
(d)
r↑ n̂

(d)
r↓ + UN̂

(d)
↓ , U > 0, (14)

with n̂(d)
rσ = d†

rσ drσ and N̂ (d)
σ = ∑

r n̂(d)
rσ . Letting {|�,〉} be an orthonormal real basis of N2/2-

particle states (that is, each |�,〉 must be an homogeneous polynomial of degree N2/2 in the
d†

r with real coefficients acting on the vacuum), we recall that the ground state at half filling

|� [0]〉 =
∑
,1,2

L,1,2 |�,1↑〉 ⊗ |�,2↓〉 (15)

is such that the Lieb matrix L,1,2 is positive (or negative) semidefinite.



2658 G Stefanucci and M Cini

In this section we shall perform the unitary particle–hole transformation in equation (13)
on the ground state of equations (10) and (11). We shall show that the corresponding Lieb
matrix is indeed positive semidefinite; besides, it is already diagonal in the local basis. As
a consequence, the ground state in the untransformed (c) picture is a pseudospin (as well as
spin) singlet.

Let c
†
i , i = 1, . . . , 2N − 2, be the operators which create a particle in the ith local state

contained in |)AF 〉σ (equations (10) and (11)). We write |)AF 〉σ as

|)AF 〉σ = c
†
1,σ . . . c

†
N−1,σ c

†
N,−σ . . . c

†
2N−2,−σ |0〉. (16)

It is clear that the first (last) N − 1 creation operators refer to the states of spin σ (−σ ) in
equations (10) and (11). The singlet projection gives

|)[0]
AF 〉 = PS=0|)AF 〉↑

= 1√
N

{ 1∑
k=N/2

(−)kgk

N−1∑
i N

2 −k
>···>i1=1

Ŝ−
i1

. . . Ŝ−
i N

2 −k

2N−2∑
j N

2 −k
>···>j1=N

Ŝ+
j1

. . . Ŝ+
j N

2 −k

}

× c
†
1,↑ . . . c

†
N−1,↑c

†
N,↓ . . . c

†
2N−2,↓|0〉

+
1√
N

{ 1∑
k=N/2

(−)k+1gk

N−1∑
i N

2 −k
>···>i1=1

Ŝ+
i1

. . . Ŝ+
i N

2 −k

×
2N−2∑

j N
2 −k

>···>j1=N

Ŝ−
j1

. . . Ŝ−
j N

2 −k

}
c

†
1,↓ . . . c

†
N−1,↓c

†
N,↑ . . . c

†
2N−2,↑|0〉 (17)

where Ŝ+
i = c

†
i,↑ci,↓, Ŝ−

i = (Ŝ+
i )†, N is the normalization constant

N = 2
N/2∑
k=1

g2
k

(
N − 1

N/2 − k

)2

(18)

and the gk are given by

gk =

(
N/2 + k − 1

N/2 − 1

)
(

N/2
N/2 − k

) . (19)

Let

ck = 1

N

∑
r

eik·rcr, dk = 1

N

∑
r

eik·r dr (20)

be the Fourier-transformed operators of the site annihilation operators cr and dr respectively.
From equation (13) we obtain

ck↓ = dk↓, ck↑ = d
†
Q−k↑, Q = (π, π). (21)

The ground state with the Fermi sea explicitly written is given by |� [0]
AF 〉 = |)[0]

AF 〉 ⊗ |0〉,
where |0〉 is the contribution from the filled shells:

|0〉 = |0↑〉 ⊗ |0↓〉, |0σ 〉 =
∏

ε(k)<0

c
†
kσ |0〉. (22)

Modulo an overall phase factor, the particle–hole transformation yields

|0↓〉 =
∏

ε(k)<0

c
†
k↓|0〉 =

∏
ε(k)<0

d
†
k↓|0〉 ≡ |0̃↓〉 (23)

|0↑〉 =
∏

ε(k)<0

c
†
k↑|0〉 =

∏
ε(k)<0

dQ−k↑
∏
k

d
†
k↑|0〉. (24)



Analytic correlation functions of the two-dimensional half-filled Hubbard model at weak coupling 2659

Let di be the operator obtained substituting ck with dk in the definition of ci . We note that
ε(k) < 0 corresponds to ε(Q−k) > 0. Then, the spin-up filled-shell state |0↑〉 can be written
as

|0↑〉 =
∏

ε(k)�0

d
†
k↑|0〉 = d

†
1,↑ . . . d

†
N−1,↑d

†
N,↑ . . . d

†
2N−2,↑∏

ε(k)<0

d
†
k↑|0〉 ≡ d

†
1,↑ . . . d

†
N−1,↑d

†
N,↑ . . . d

†
2N−2,↑|0̃↑〉

(25)

and hence

|0↑〉 ⊗ |0↓〉 = d
†
1,↑ . . . d

†
N−1,↑d

†
N,↑ . . . d

†
2N−2,↑|0̃↑〉 ⊗ |0̃↓〉. (26)

The next step is to express ciσ in terms of diσ . By direct inspection one readily realizes that

ci↓ = di↓ ∀i, ci↑ =
{

d
†
i↑ i = 1, . . . , N − 1

−d
†
i↑ i = N, . . . , 2N − 2.

(27)

The above result implies that the raising operators Ŝ+
i in the d picture are given by

Ŝ+
i =

{
di↑di↓ ≡ Di i = 1, . . . , N − 1

−di↑di↓ ≡ −Di i = N, . . . , 2N − 2.
(28)

These last three equations allow us to rewrite the whole ground state |� [0]
AF 〉 = |)[0]

AF 〉 ⊗ |0〉
in the new picture:

|�[0]
AF 〉 = 1√

N

{ 1∑
k=N/2

gk

N−1∑
i N

2 −k
>···>i1=1

D
†
i1

. . . D
†
i N

2 −k

2N−2∑
j N

2 −k
>···>j1=N

Dj1 . . . Dj N
2 −k

}

× d1,↑ . . . dN−1,↑d
†
N,↓ . . . d

†
2N−2,↓d

†
1,↑ . . . d

†
N−1,↑d

†
N,↑ . . . d

†
2N−2,↑|0̃↑〉 ⊗ |0̃↓〉

+
1√
N

{ 1∑
k=N/2

gk

N−1∑
i N

2 −k
>···>i1=1

Di1 . . . Di N
2 −k

2N−2∑
j N

2 −k
>···>j1=N

D
†
j1

. . . D
†
j N

2 −k

}

× d
†
1,↓ . . . d

†
N−1,↓dN,↑ . . . d2N−2,↑d

†
1,↑ . . . d

†
N−1,↑d

†
N,↑ . . . d

†
2N−2,↑|0̃↑〉 ⊗ |0̃↓〉

= 1√
N

{ 1∑
k=N/2

gk

N−1∑
i N

2 −k
>···>i1=1

2N−2∑
j N

2 −k
>···>j1=N

D
†
i1

. . . D
†
i N

2 −k

Dj1 . . . Dj N
2 −k

}

× d
†
N,↑ . . . d

†
2N−2,↑d

†
N,↓ . . . d

†
2N−2,↓|0̃↑〉 ⊗ |0̃↓〉

+
1√
N

{ 1∑
k=N/2

gk

N−1∑
i N

2 −k
>···>i1=1

2N−2∑
j N

2 −k
>···>j1=N

Di1 . . . Di N
2 −k

D
†
j1

. . . D
†
j N

2 −k

}

× d
†
1,↑ . . . d

†
N−1,↑d

†
1,↓ . . . d

†
N−1,↓|0̃↑〉 ⊗ |0̃↓〉. (29)

Therefore, the singlet ground state has the following form:

|�[0]
AF 〉 =

∑
,

w,D†
,↑|0̃↑〉 ⊗ D†

,↓|0̃↓〉, (30)

where , = {γ1, . . . , γN−1} with 1 � γ1 < · · · < γN−1 � 2N − 2 and D†
, = d†

γ1
. . . d†

γN−1
. w,

is the amplitude corresponding to the configuration ,. If in , there are p indices between 1
and N − 1 and N − 1 − p indices between N and 2N − 2, or vice versa, the amplitude w, is
given by

w, = 1√
N

gN/2−p. (31)
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We conclude that the Lieb matrix is already diagonal in the local basis, and the
nonvanishing diagonal elements are w, > 0. Thus it is positive semidefinite, which is
consistent with its use as the ground state. We are now in a position to calculate the correlation
functions.

4. The spin correlation function

In this section we shall explicitly write down an exact analytic formula for the spin correlation
function of the half-filled Hubbard model in the limit of vanishing interaction. In particular
we evaluate

Gspin(r) = 〈� [0]
AF |Sr · S0|� [0]

AF 〉, S0 ≡ Sr=(0,0) (32)

where Sr = (Ŝx
r , Ŝy

r , Ŝz
r) is the spin vector operator at site r with components

Ŝx
r = 1

2 (Ŝ+
r + Ŝ−

r ), Ŝy
r = 1

2i
(Ŝ+

r − Ŝ−
r ), Ŝz

r = 1
2 (n̂r↑ − n̂r↓) (33)

and

Ŝ+
r = c

†
r↑cr↓, Ŝ−

r = (Ŝ+
r )† = c

†
r↓cr↑. (34)

Taking into account that �
[0]
AF is a singlet, one has 〈Ŝx

r Ŝx
0 〉 = 〈Ŝy

r Ŝ
y

0 〉 = 〈Ŝz
rŜ

z
0〉 and hence

Gspin(r) = 3
4 [〈Ŝ−

r Ŝ+
0 + Ŝ+

r Ŝ−
0 〉] (35)

with Ŝ±
0 = Ŝ±

r=(0,0) and 〈. . .〉 means the expectation value over the ground state |� [0]
AF 〉. Since

|�[0]
AF 〉 is a real linear combination of real basis vectors, G−+(r) ≡ 〈Ŝ−

r Ŝ+
0 〉 ∈ � ∀r and this

implies

G−+(r) = G−+(r)∗ = 〈Ŝ−
0 Ŝ+

r 〉 = 〈Ŝ+
r Ŝ−

0 〉 − 2δr,0〈Ŝz
r〉. (36)

Noting that |� [0]
AF 〉 is a translation-invariant state, 〈Ŝz

0〉 = 1
N2

∑
r〈Ŝz

r〉 = 1
N2 〈Ŝz〉 = 0 and hence

G−+(r) = 〈Ŝ+
r Ŝ−

0 〉 ≡ G+−(r). (37)

This last equation allow us to express the spin correlation function Gspin(r) in terms of G−+(r)

only

Gspin(r) = 3
2 G−+(r), (38)

and the original problem is reduced to the calculation of G−+(r). In the following we shall
show that G−+(r) can be expressed in terms of three main contributions, two of which are
easily computable in the particle–hole transformed picture. Therefore, it is convenient to
express G−+(r) in terms of the d operators:

G−+(r) = 〈c†
r↓cr↑c

†
0↑c0↓〉 = (−)x+y〈d†

r↓d
†
r↑d0↑d0↓〉

= (−)x+y
∑
,1,2

w,1w,2〈0̃↓|D,1↓d
†
r↓d0↓D†

,2↓|0̃↓〉

× 〈0̃↑|D,1↑d
†
r↑d0↑D†

,2↑|0̃↑〉 ≡ (−)x+y
∑
,1,2

w,1w,2G,1,2(r)2, (39)

where, dropping the spin index,

G,1,2(r) = 〈,1|d†
rd0|,2〉, |,〉 = D†

,|0̃〉. (40)

Here and in the following c0σ ≡ cr=(0,0)σ and d0σ ≡ dr=(0,0)σ . Since the w, are non-
negative, equation (39) shows that G−+(r) is positive if r belongs to the sublattice A containing
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r = (0, 0) and negative otherwise. This was pointed out in [17]. All the information on the spin
correlation function is enclosed in the site-dependent matrix elements G,1,2(r). To evaluate
them we write the annihilation operator dr as the sum of three pieces

dr = 1

N

∑
k

eik·rdk =
√|Shf |

N
d1(r) +

√|S|
N

dξ (r) +

√|S|
N

dξ̄ (r)

≡ ρhf d1(r) + ρ[dξ (r) + dξ̄ (r)], (41)

with

d1(r) = 1√|Shf |
∑

ε(k)=0

eik·rdk, dξ (r) = 1√|S|
∑

ε(k)<0

eik·rdk,

dξ̄ (r) = 1√|S|
∑

ε(k)>0

eik·rdk

(42)

and |Shf | = 2N − 2, |S| = 1
2 (N2 − |Shf |). We observe that d1(0) = d1(r = (0, 0))

belongs to A1 and that it can be written as a real linear combination of all the A1-symmetric
annihilation operators of the local basis. By a unitary transformation on this A1 subspace
we may arrange that d1(0) is the new d1. Thus, from now on, the one-body local basis
{d†

i |0〉, i = 1, . . . , 2N − 2}, is such that the set of the A1-symmetric local states contains
d

†
1 (0)|0〉 and d

†
1 |0〉 = d

†
1 (0)|0〉.

Taking equation (41) into account one can express G,1,2(r) as the sum of two terms:

G,1,2(r) = ρ2
hf 〈,1|d†

1 (r)d1|,2〉 + ρ2〈,1|d†
ξ (r)dξ |,2〉 ≡ ρ2

hf G
[hf ]
,1,2

(r) + ρ2G
[ξ ]
,1,2

(r), (43)

with d1 ≡ d1(0) and dξ ≡ dξ (0) ≡ dξ (r = (0, 0)). G
[ξ ]
,1,2

(r) can be easily evaluated:

G
[ξ ]
,1,2

(r) = 〈,1|d†
ξ (r)dξ |,2〉

= δ,1,2

∑
ε(k1)<0

∑
ε(k2)<0

e−ik1·r 1

|S| 〈0̃|d†
k1

dk2 |0̃〉 = δ,1,2

T (r)

|S| (44)

where T (r) = ∑
ε(k)<0 e−ik·r is the trace of the translation matrix in the Hilbert space spanned

by the negative-energy one-body plane-wave states. Taking into account equations (43) and
(44), G−+(r) in equation (39) can be rewritten as

G−+(r) = (−)x+y

{
ρ4

hf

∑
,1,2

w,1w,2G
[hf ]
,1,2

(r)2 + 2ρ2ρ2
hf

T (r)

|S|

×
∑

,

w2
,G

[hf ]
,, (r) + ρ4 T (r)2

|S|2
∑

,

w2
,

}
. (45)

By definition
∑

, w2
, = 〈� [0]

AF |� [0]
AF 〉 = 1. To evaluate the diagonal matrix elements G

[hf ]
,, (r)

we need to use the antiferromagnetic property. In the local basis, the one-body translation
matrix has an antidiagonal block form if x+y is odd and hence a diagonal block form otherwise.
Therefore d1(r) can be expanded as

d1(r) =




N−1∑
i=1

ti(r)di, ti(r) ∈ � x + y even

2N−2∑
i=N

ti(r)di, ti(r) ∈ � x + y odd

(46)



2662 G Stefanucci and M Cini

and G
[hf ]
,, (r) becomes

G
[hf ]
,, (r) = 〈,|d†

1 (r)d1|,〉 =
{

t1(r)δ1γ1 x + y even

0 x + y odd
(47)

where γ1 is the first index of the configuration , (we recall that , = {γ1, . . . , γN−1} with
1 � γ1 < · · · < γN−1 � 2N − 2). Substituting this result into equation (45) we see we need
to evaluate

∑
, w2

,δ1γ1 . This can be done by observing that |)[0]
AF 〉 can be rewritten in the c

picture as

|)[0]
AF 〉 = |)[0]

↑ 〉 − |)[0]
↓ 〉 (48)

with

|)[0]
↑ 〉 = 1√

N
N−2∑
k=0

(−)kfk

N−1∑
ik>···>i1=2

2N−2∑
jk>···>j1=N

× Ŝ−
ik

. . . Ŝ−
i1

Ŝ+
jk

. . . Ŝ+
j1

c
†
1,↑ . . . c

†
N−1,↑c

†
N,↓ . . . c

†
2N−2,↓|0〉 (49)

|)[0]
↓ 〉 = 1√

N
N−2∑
k=0

(−)kfk

N−1∑
ik>···>i1=2

2N−2∑
jk>···>j1=N

× Ŝ+
ik

. . . Ŝ+
i1
Ŝ−

jk
. . . Ŝ−

j1
c

†
1,↓ . . . c

†
N−1,↓c

†
N,↑ . . . c

†
2N−2,↑|0〉 (50)

and

fk =
{

gN/2−k k = 0, . . . , N/2 − 1

gk+1−N/2 k = N/2, . . . , N − 1.
(51)

All the configurations contained in |)[0]
↓ 〉 are such that in the particle–hole transformed picture

δ1γ1 = 1. On the other hand, all the configurations contained in |)[0]
↑ 〉 are such that in the

particle–hole transformed picture δ1γ1 = 0. Therefore∑
,

w2
,δ1γ1 = 〈)[0]

↓ |)[0]
↓ 〉 = 〈)[0]

↑ |)[0]
↑ 〉 = 1

2 . (52)

The second term in equation (45) is totally determined once we know t1(r). By definition

t1(r) = 〈0|d†
1 (r)d1|0〉 = Thf (r)

|Shf | , (53)

where Thf (r) = ∑
ε(k)=0 eik·r is the trace of the translation matrix in the Hilbert space spanned

by the ε(k) = 0 one-body plane-wave states. In the last equality of equation (53) we have used
equation (42). By noting that Thf (r) vanishes any time x + y is odd, one obtains for G−+(r)

the following result:

G−+(r) = (−)x+y

{
ρ4

hf

∑
,1,2

w,1w,2G
[hf ]
,1,2

(r)2 +
1

N4
T (r)[T (r) + Thf (r)]

}
(54)

where we have used equations (47), (52) and (53).
In order to make this result more explicit, we perform the sum in the first term of

equation (54). It can be easily calculated originating back to the original c picture. Indeed

(−)x+y
∑
,1,2

w,1w,2G
[hf ]
,1,2

(r)2 = 〈� [0]
AF |c†

1,↓c1,↑T̂ (r)c
†
1,↑c1,↓|� [0]

AF 〉

= 〈)[0]
↓ |c†

1,↓c1,↑T̂ (r)c
†
1,↑c1,↓|)[0]

↓ 〉 ≡ X(r) (55)
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where |)[0]
↓ 〉 is defined in equation (50) and T̂ (r) is the translation operator by r:

T̂ †(r)c1T̂ (r) = c1(r). As usual ci is given by the same expression which defines di ,
with dk → ck. Therefore, according to the new expression of d1 = d1(0), we have
c1 = 1

|Shf |
∑

ε(k)=0 ck and this is why c1 = c1(0) = c1(r = (0, 0)) shows up in equation (55).
Finally we observe that the spin-dependent filled Fermi sea |0σ 〉 can contribute only a phase
factor corresponding to its momentum; since |0σ 〉 has vanishing momentum the phase factor
is exactly unity.

The explicit evaluation of X(r) is deferred to appendix A. Here we report the final result

X(r) = (−)x+y

|Shf |2
{

A + B × T 2
hf (r) x + y even

A + B × (4N − 4) x + y odd
(56)

where A and B are two N -dependent constants. Eventually, substituting this last result in
equation (54) and taking into account equation (38), we obtain the full analytic expression of
the spin correlation function

Gspin(r) = 3

2

(−)x+y

N4

[
T (r)[T (r) + Thf (r)] +

{
A + B × T 2

hf (r) x + y even
A + B × (4N − 4) x + y odd

]
. (57)

In this form it is not hard to show that independent of the numerical value of the two constants
A and B the sum rule∑

r

Gspin(r) = 0 (58)

holds. Indeed, let us consider the identities∑
r

(−1)x+yT (r)2 =
∑

r

∑
ε(k),ε(k′)<0

(−1)x+ye−i(k+k′)·r =
∑

ε(k),ε(k′)<0

∑
r

e−i(k+k′+Q)·r; (59)

since the r summation yields N2 times a δ function, and the δ function is never satisfied (if
ε(k) < 0 then ε(Q − k) > 0), one finds that∑

r

(−1)x+yT (r)2 = 0, (60)

and, similarly, ∑
r

(−1)x+yT (r)Thf (r) = 0. (61)

On the other hand, since

∑
r∈A

eik·r = N2

2
(δk,0 + δk,Q), (62)

where A is the sublattice with sites having x + y even, one obtains

∑
r∈A

Thf (r)2 = N2

2
(4N − 4) (63)

and hence equation (58).
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5. The charge correlation function

The charge and spin correlation functions are closely related. Let n̂[±]
r = n̂r↑ ± n̂r↓; so, n̂[+]

r is
the number operator, while n̂[−]

r is twice the z component of the spin on the site r. Then, the
charge correlation function is given by

Gcharge(r) ≡ 〈� [0]
AF |n̂[+]

r n̂
[+]
0 |� [0]

AF 〉, (64)

while the spin correlation function can be written as

Gspin(r) = 3〈� [0]
AF |Ŝz

rŜ
z
0|� [0]

AF 〉 = 3
4 〈� [0]

AF |n̂[−]
r n̂

[−]
0 |� [0]

AF 〉, (65)

where n̂
[±]
0 ≡ n̂

[±]
r=(0,0). Let

|� [0]
AF 〉 = |� [0]

↑ 〉 − |� [0]
↓ 〉, (66)

with |� [0]
σ 〉 = |)[0]

σ 〉 ⊗ |0〉, be a suitable decomposition of the singlet ground-state
wavefunction (see equation (48)). Exploiting the invariance of 〈� [0]

σ |n̂[±]
r n̂

[±]
0 |� [0]

σ ′ 〉 for
simultaneous flips of σ and σ ′ we obtain

Gcharge(r) = 2[〈� [0]
↑ |n̂[+]

0 T̂ (r)n̂
[+]
0 |� [0]

↑ 〉 − 〈� [0]
↓ |n̂[+]

0 T̂ (r)n̂
[+]
0 |� [0]

↑ 〉] (67)

Gspin(r) = 3
2 [〈� [0]

↑ |n̂[−]
0 T̂ (r)n̂

[−]
0 |� [0]

↑ 〉 − 〈� [0]
↓ |n̂[−]

0 T̂ (r)n̂
[−]
0 |� [0]

↑ 〉], (68)

where T̂ (r) is the operator of the translation by r, such that

n̂rσ = T̂ †(r)n̂0σ T̂ (r) (69)

and T̂ (r)|� [0]
AF 〉 = |� [0]

AF 〉 has been used. The action of n̂
[±]
0 on the state |� [0]

σ 〉 can be easily
evaluated. We can express cr as the sum of three operators as in equation (41)

cr = ρhf c1(r) + ρ[cξ (r) + cξ̄ (r)] (70)

where c1, cξ and cξ̄ are defined as d1, dξ and dξ̄ in equation (42), but dk must be substituted
with ck. Then we obtain

n̂
[±]
0 |� [0]

↑ 〉 = (n̂0↑ ± n̂0↓)|� [0]
↑ 〉 = [(ρ2

hf + ρ2 ± ρ2)

+ ρρhf (c
†
ξ̄↑c1,↑ ± c

†
1,↓cξ↓) + ρ2(c

†
ξ̄↑cξ↑ ± c

†
ξ̄↓cξ↓)]|� [0]

↑ 〉, (71)

n̂
[±]
0 |� [0]

↓ 〉 = (n̂0↑ ± n̂0↓)|� [0]
↓ 〉 = [(ρ2 ± ρ2

hf ± ρ2)

+ ρρhf (c
†
1,↑cξ↑ ± c

†
ξ̄↓c1,↓) + ρ2(c

†
ξ̄↑cξ↑ ± c

†
ξ̄↓cξ↓)]|� [0]

↓ 〉. (72)

Hence (n̂0↑ ± n̂0↓)|�σ 〉 can be expressed as a linear combination of five orthogonal states. By
means of these two last equations one obtains

〈� [0]
↑ |n̂[±]

0 T̂ (r)n̂
[±]
0 |� [0]

↑ 〉
= [(ρ2

hf + ρ2 ± ρ2)2 + 2ρ4〈0|c†
ξ↑cξ̄↑T̂ (r)c

†
ξ̄↑cξ↑|0〉]〈)[0]

↑ |T̂ (r)|)[0]
↑ 〉

+ ρ2ρ2
hf (〈)[0]

↑ |c†
1,↑T̂ (r)c1,↑|)[0]

↑ 〉〈0|cξ̄↑T̂ (r)c
†
ξ̄↑|0〉

+ 〈)[0]
↑ |c1,↓T̂ (r)c

†
1,↓|)[0]

↑ 〉〈0|c†
ξ↓T̂ (r)cξ↓|0〉) (73)

and

〈� [0]
↓ |n̂[±]

0 T̂ (r)n̂
[±]
0 |� [0]

↑ 〉
= [±(ρ2

hf + ρ2 ± ρ2)2 + 2ρ4〈0|c†
ξ↑cξ̄↑T̂ (r)c

†
ξ̄↑cξ↑|0〉]〈)[0]

↓ |T̂ (r)|)[0]
↑ 〉 (74)
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since 〈0|c†
ξσ cξ̄σ T̂ (r)c

†
ξ̄σ

cξσ )|0〉 does not depend on σ . The number of scalar products can be

further reduced: we recall that |)[0]
AF 〉 ≡ |)[0]

↑ 〉− |)[0]
↓ 〉 is an eigenstate of the total momentum

with vanishing eigenvalue

1 = 〈)[0]
AF |T̂ (r)|)[0]

AF 〉 = 2[〈)[0]
↑ |T̂ (r)|)[0]

↑ 〉 − 〈)[0]
↓ |T̂ (r)||)[0]

↑ 〉] (75)

and hence

〈)[0]
↓ |T̂ (r)|)[0]

↑ 〉 = 〈)[0]
↑ |T̂ (r)|)[0]

↑ 〉 − 1
2 . (76)

Substituting equation (76) into (74) and then subtracting equation (73) term by term yields

〈�[0]
↑ |n̂[±]

0 T̂ (r)n̂
[±]
0 |� [0]

↑ 〉 − 〈� [0]
↓ |n̂[±]

0 T̂ (r)n̂
[±]
0 |� [0]

↑ 〉
= ± 1

2 (ρ2
hf + ρ2 ± ρ2)2 + ρ4〈0|c†

ξ↑cξ̄↑T̂ (r)c
†
ξ̄↑cξ↑|0〉

+ ρ2ρ2
hf [〈)[0]

↑ |c†
1,↑T̂ (r)c1,↑|)[0]

↑ 〉〈0|cξ̄↑T̂ (r)c
†
ξ̄↑|0〉

+ 〈)[0]
↑ |c1,↓T̂ (r)c

†
1,↓|)[0]

↑ 〉〈0|c†
ξ↓T̂ (r)cξ↓|0〉]

+ [(1 ± (−1))(ρ2
hf + ρ2 ± ρ2)2]〈)[0]

↑ |T̂ (r)|)[0]
↑ 〉 (77)

and so, since ρ2
hf + 2ρ2 = 1,

Gcharge(r) = 1 + 4
3Gspin(r) + ρ4

hf [1 − 4Y (r)], (78)

where

Y (r) ≡ 〈)[0]
↑ |T̂ (r)|)[0]

↑ 〉. (79)

We postpone to appendix 6 the explicit calculation of Y (r). Here we limit ourselves to
presenting the final results

Y (r) = 1

4
+

(−)x+y

|Shf |2 ×
{

D + E × Thf (r)2 x + y even

D + E × (4N − 4) x + y odd.
(80)

As for the spin correlation function one can easily verify that independent of the numerical
value of the two N -dependent constants D and E, the sum rule∑

r

Gcharge(r) = N2 (81)

is satisfied.

6. Results and discussion

Most of the available data on the half-filled Hubbard model on a square lattice refer to the
4 × 4 cluster (see for example [5]). On the left-hand side of figure 1 we report a classical
representation of the spin correlations in the 4×4 lattice: the length of the lines is proportional
to the absolute value of the correlation function, and the sign is positive for the lines going up.
This representation was adopted in [5] and our result is identical to that reported there, which
was obtained by second-order perturbation theory on the computer.

More data [18,19] on the 4×4 cluster were obtained by Fano, Ortolani and Parola by exact
diagonalization augmented by an intensive use of group theory techniques. On the right-hand
side of figure 1 we report the spin correlation function in real space, Gspin(r) in equation (57),
along a triangular path. Although our results are almost exact for U → 0, remarkably the
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G
sp

in

Figure 1. Left: the spin correlation function between the origin (empty circle) and the other sites;
the length of the lines is proportional to the absolute value of the correlation function, and the sign
is positive for the lines going up. The on-site value is reduced by a factor of 0.4 for graphical
convenience. Right: the spin correlation function in real space for the 4 × 4 model, along a
anticlockwise path from the origin (empty circle, see the inset).

trend is quite the same as the one reported in [18] for U = 4. An overall factor of four depends
on the definition of the spin operators in [18], lacking the usual 1/2 factor.

The analytic expression of the spin correlation function in equation (57) agrees with the
important Shen–Qiu–Tian [17] theorem, which has been extended to finite temperatures quite
recently [20]. This theorem states that the spin correlation function must be positive on one
sublattice and negative on the other. This applies to the results for the 4 × 4, 6 × 6, 8 × 8
and 10 × 10 clusters as well, as shown in figure 2. Essentially, the Shen–Qiu–Tian property
is a consequence of the positive semidefinite ground-state Lieb matrix, and we have explicitly
verified this property in section 3 above.

The Fourier transform of the spin correlation function

Gspin(k) ≡
∑

r

eik·rGspin(r) (82)

is shown in figure 3; the ticks on the x axis correspond to the points , ≡ (0, 0), P ≡ (π, 0),
Q ≡ (π, π) and , again, in k-space. The trend is seen to converge rather quickly to a
characteristic shape which is strongly peaked in the Q direction.

The charge correlation function in real space shows characteristic structures with two
intersecting channels at 45◦ from the axes as exemplified in figure 4 for the 10×10 case; at the
intersection the correlation function presents a narrow hole. Similar trends are observed for the
other clusters, although the intensity of the corrugation declines with increasing cluster size.

The Fourier-transformed charge correlation function is dominated by a delta function at
, ≡ (0, 0) resulting from the almost constant distribution in real space. In figure 5 we have
removed that delta. The figure represents Gcharge(k) ≡ ∑

r eik·rGcharge(r) along the path ,, P,
Q, , (see figure caption for details) for the 10 × 10 square lattice. Already at this cluster size
Gcharge(k) shows a very similar trend to its asymptotic (N → ∞) shape.

In conclusion, we have obtained explicit analytic expressions for the spin and charge
correlation functions using a weak-coupling ground-state wavefunction |� [0]

AF 〉 of the half-
filled Hubbard model on a square lattice. We compared our analytic results with the numerical
data available in the literature. They always agree well; remarkably, provided that U � t/N2,
our predictions are good approximations to the exact diagonalization results.

As far as the non-half-filled system is concerned, the same local formalism can be used
to calculate the correlation functions of the doped Hubbard antiferromagnet, but first-order
perturbation theory is not enough to single out a unique ground state. However, in the half-
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Figure 2. The spin correlation function in real space for the 4×4, 6×6, 8×8 and 10×10 clusters.
The Shen–Qiu–Tian property is evident.
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P Q
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Figure 3. The Fourier transform of the spin correlation functions in clusters of various sizes. The
ticks on the x axis correspond to ,, P, Q and ,, as usual.

filled ground state there are 2N − 2 particles in the ε = 0 shell that do not have double
occupation; therefore, doping the system with two holes, one obtains a first-order ground state
provided that a pair is annihilated belonging to the shell Shf ; this must be a W = 0 pair. Since
there are W = 0 pairs belonging to different irreps of the space group, the many-body ground
state which is formed by annihilating the pair also has components of different symmetries.
For each symmetry, we shall have different correlation functions to compute. Actually, we
need second-order perturbation theory to resolve the degeneracy. This was done in [21] in the
special case N = 4. On the other hand, the problem becomes trivial when the shell at the
Fermi surface is totally filled since the non-interacting ground state is unique.
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Figure 4. Real space representation of the charge correlation function in the 4 × 4, 6 × 6, 8 × 8
and 10 × 10 clusters.
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As pointed out in [22], one can use standard perturbation theory to calculate the correlation
functions order by order in U ; in the thermodynamic limit they can be expanded as an
asymptotic series.

Appendix A. Evaluation of X

To evaluate X(r) = 〈)[0]
↓ |c†

1,↓c1,↑T̂ (r)c
†
1,↑c1,↓|)[0]

↓ 〉 we need to consider separately the cases
of even and odd x + y. In the first case, let T (r) be the block-diagonal translation matrix in
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the local basis:

T̂ (r)c
†
i |0〉 =

2N−2∑
γ=1

T (r)i,γ c†
γ |0〉 =




N−1∑
α=1

T (r)i,αc†
α|0〉, i = 1, . . . , N − 1

2N−2∑
β=N

T (r)i,βc
†
β |0〉, i = N, . . . , 2N − 2.

(A.1)

We have

T̂ (r)c
†
1,↑c1,↓|)[0]

↓ 〉 = 1√
N

N−1∑
α1...αN−1=1

2N−2∑
β1...βN−1=N

N−1∏
a=1

T (r)a,αa

2N−2∏
b=N

T (r)b,βb

×
N−2∑
k=0

(−)kfk

N−1∑
ik>···>i1=2

N−1∑
jk>···>j1=1

× Ŝ+
αik

. . . Ŝ+
αi1

Ŝ+
α1

Ŝ−
βjk

. . . Ŝ−
βj1

c
†
α1,↓ . . . c

†
αN−1,↓c

†
β1,↑ . . . c

†
βN−1,↑|0〉 (A.2)

and hence

X(r) = 1

N
N−1∑

α1...αN−1=1

2N−2∑
β1...βN−1=N

N−1∏
a=1

T (r)a,αa

2N−2∏
b=N

T (r)b,βb

N−2∑
k=0

f 2
k

×
{ N−1∑

mk>···>m1=2

N−1∑
ik>···>i1=2

× 〈0|cN−1,↓ . . . c1,↓Ŝ−
mk

. . . Ŝ−
m1

Ŝ−
1 Ŝ+

αik
. . . Ŝ+

αi1
Ŝ+

α1
c

†
α1,↓ . . . c

†
αN−1,↓|0〉

}

×
{ 2N−2∑

nk>···>n1=N

N−1∑
jk>···>j1=1

× 〈0|c2N−2,↑ . . . cN,↑Ŝ+
nk

. . . Ŝ+
n1

Ŝ−
βjk

. . . Ŝ−
βj1

c
†
β1,↑ . . . c

†
βN−1,↑|0〉

}
. (A.3)

Taking into account that the annihilation operators in the second and third rows of the above
equation are all different (in particular their indices are 1, . . . , N − 1 in the second row and
N, . . . , 2N − 2 in the third row), a great simplification takes place:

N−1∑
ik>···>i1=2

Ŝ+
αik

. . . Ŝ+
αi1

Ŝ+
α1

c
†
α1,↓ . . . c

†
αN−1,↓|0〉

= εα1...αN−1

N−1∑
ik>···>i1=1,�=α1

Ŝ+
ik

. . . Ŝ+
i1
Ŝ+

α1
c

†
1,↓ . . . c

†
N−1,↓|0〉 + · · · (A.4)

N−1∑
jk>···>j1=1

Ŝ−
βjk

. . . Ŝ−
βj1

c
†
β1,↑ . . . c

†
βN−1,↑|0〉

= ε̃β1...βN−1

2N−2∑
jk>···>j1=N

Ŝ−
jk

. . . Ŝ−
j1

c
†
N,↑ . . . c

†
2N−2,↑|0〉 + · · · (A.5)

where ε is the totally antisymmetric tensor with N − 1 indices, while ε̃β1...βN−1 ≡
εβ1−N+1···βN−1−N+1 and the dots mean that we are neglecting other terms whose contribution to
the scalar product is zero. On the right-hand side of equation (A.4) the summation indices
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ik > · · · > i1 run in the interval {1, . . . , N − 1} in such a way that none of them is equal to
α1. Using equation (A.4), the second row of equation (A.3) yields

εα1...αN−1

N−1∑
mk>···>m1=2

N−1∑
ik>···>i1=1,�=α1

〈0|cN−1,↓ . . . c1,↓Ŝ−
mk

. . . Ŝ−
m1

Ŝ−
1 Ŝ+

ik
. . . Ŝ+

i1
Ŝ+

α1
c

†
1,↓ . . . c

†
N−1,↓|0〉

= εα1...αN−1

[
δ1α1

(
N − 2

k

)
+ (1 − δ1α1)

(
N − 3
k − 1

)]
(A.6)

while using equation (A.5), the third row of equation (A.3) yields

ε̃β1...βN−1

2N−2∑
nk>···>n1=N

2N−2∑
jk>···>j1=N

〈0|c2N−2,↑ . . . cN,↑Ŝ+
nk

. . . Ŝ+
n1

Ŝ−
jk

. . . Ŝ−
j1

c
†
N,↑ . . . c

†
2N−2,↑|0〉

= ε̃β1...βN−1

(
N − 1

k

)
. (A.7)

These two last results allow us to rewrite X(r) as

X(r) = A

|Shf |2 + BC1,1(r)T (r)1,1 (A.8)

where, using the convention
(

r

−|s|
)

= 0 for a binomial coefficient with negative down entry,

A = |Shf |2
N

N−2∑
k=0

f 2
k

(
N − 1

k

) (
N − 3
k − 1

)
(A.9)

B = 1

N
N−2∑
k=0

f 2
k

(
N − 1

k

) [(
N − 2

k

) (
N − 3
k − 1

)]
(A.10)

and C1,1(r) is the (1, 1) algebraic complement of the matrix T (r) whose determinant is equal
to unity for even x +y. The (1, 1) algebraic complement can be expressed in terms of the (1, 1)
element of the matrix T (r): C1,1(r) = T †(r)1,1Det[T (r)] = T (r)1,1 (since T (r)i,j ∈ �).
Next one has to recognize that T (r)1,1 is, by definition, equal to t1(r) (see equation (46))
whose analytic expression is given in equation (53). Therefore, any time x + y is even we have

X(r) = 1

|Shf |2 [A + B × Thf (r)2]. (A.11)

On the other hand, for odd x + y the translation matrix in the local basis is antiblock
diagonal, that is

T̂ (r)c
†
i |0〉 =

2N−2∑
γ=1

T (r)i,γ c†
γ |0〉 =




2N−2∑
α=N

T (r)i,αc†
α|0〉, i = 1, . . . , N − 1

N−1∑
β=1

T (r)i,βc
†
β |0〉, i = N, . . . , 2N − 2

(A.12)

and hence

T̂ (r)c
†
1,↑c1,↓|)[0]

↓ 〉 = 1√
N

2N−2∑
α1...αN−1=N

N−1∑
β1...βN−1=1

N−1∏
a=1

T (r)a,αa

2N−2∏
b=N

T (r)b,βb

×
N−2∑
k=0

(−)kfk

N−1∑
ik>···>i1=2

N−1∑
jk>···>j1=1

× Ŝ+
αik

. . . Ŝ+
αi1

Ŝ+
α1

Ŝ−
βjk

. . . Ŝ−
βj1

c
†
α1,↓ . . . c

†
αN−1,↓c

†
β1,↑ . . . c

†
βN−1,↑|0〉. (A.13)
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Let us consider the kth term of this state. One can check by direct inspection that the only
non-vanishing contribution in the scalar product with the state c

†
1,↑c1,↓|)[0]

↓ 〉 originates from
the (N − k − 2)th term of the corresponding expansion (see equation (50)). Hence

X(r) = − 1

N
2N−2∑

α1...αN−1=N

N−1∑
β1...βN−1=1

N−1∏
a=1

T (r)a,αa

2N−2∏
b=N

T (r)b,βb

N−2∑
k=0

fkfN−k−2

×
{ N−1∑

mN−k−2>···>m1=2

N−1∑
jk>···>j1=1

× 〈0|cN−1,↓ . . . c1,↓Ŝ−
mN−k−2

. . . Ŝ−
m1

Ŝ−
1 Ŝ−

βjk
. . . Ŝ−

βj1
c

†
β1,↑ . . . c

†
βN−1,↑|0〉

}

×
{ 2N−2∑

nN−k−2>···>n1=N

N−1∑
ik>···>i1=2

× 〈0|c2N−2,↑ . . . cN,↑Ŝ+
nN−k−2

. . . Ŝ+
n1

Ŝ+
αik

. . . Ŝ+
αi1

Ŝ+
α1

c
†
α1,↓ . . . c

†
αN−1,↓|0〉

}
.

(A.14)

Analogously to the case x + y even, the particular structure of |)[0]
AF 〉 allows the following

simplification:
N−1∑

jk>···>j1=1

Ŝ−
βjk

. . . Ŝ−
βj1

c
†
β1,↑ . . . c

†
βN−1,↑|0〉

= εβ1...βN−1

N−1∑
jk>···>j1=1

Ŝ−
jk

. . . Ŝ−
j1

c
†
1,↑ . . . c

†
N−1,↑|0〉 + · · · (A.15)

N−1∑
ik>···>i1=2

Ŝ+
αik

. . . Ŝ+
αi1

Ŝ+
α1

c
†
α1,↓ . . . c

†
αN−1,↓|0〉

= ε̃α1...αN−1

2N−2∑
ik>···>i1=N,�=α1

Ŝ+
ik

. . . Ŝ+
i1
Ŝ+

α1
c

†
N,↓ . . . c

†
2N−2,↓|0〉 . . . (A.16)

where ε̃α1...αN−1 = εα1−N+1...αN−1−N+1 and the sum on the right-hand side of equation (A.16)
means that the indices ik > · · · > i1 run in the interval {N, . . . , 2N − 2} in such a way that
none of them is equal to α1. All the neglected terms contribute nothing to the scalar product.

Using equation (A.15) the second row of (A.14) yields

εβ1...βN−1

N−1∑
mN−k−2>···>m1=2

N−1∑
jk>···>j1=1

〈0|cN−1,↓ . . . c1,↓Ŝ−
mN−k−2

. . . Ŝ−
m1

Ŝ−
1 Ŝ−

jk
. . . Ŝ−

j1
c

†
1,↑ . . . c

†
N−1,↑|0〉

= εβ1...βN−1

(
N − 2

k

)
(A.17)

while using equation (A.16) the third row of (A.14) yields

ε̃α1...αN−1

2N−2∑
nN−k−2>···>n1=N

2N−2∑
ik>···>i1=N,�=α1

×〈0|c2N−2,↑ . . . cN,↑Ŝ+
nN−k−2

. . . Ŝ+
n1

Ŝ+
ik

. . . Ŝ+
i1
Ŝ+

α1
c

†
N,↓ . . . c

†
2N−2,↓|0〉

= ε̃α1...αN−1

(
N − 2

k

)
. (A.18)



2672 G Stefanucci and M Cini

Substituting these results in the expression for X(r) we obtain

X(r) = − C

|Shf |2 = − 1

|Shf |2 [A + B × (4N − 4)] (A.19)

where we have taken into account that Det[T (r)] = −1 for odd x + y and the constant C is
given by

C = |Shf |2
N

N−2∑
k=0

fkfN−k−2

(
N − 2

k

)2

. (A.20)

In the last equality of equation (A.19) we have used C = A + B × (4N − 4), which is a direct
consequence of the sum rule for the spin correlation function (see equation (58)).

Appendix B. Evaluation of Y

Here we show that Y (r) ≡ 〈)[0]
↑ |T̂ (r)|)[0]

↑ 〉 has the form shown in equation (80) and we derive
the explicit values for the two constants D and E. As for X(r) we shall first consider the case
x + y even and thereafter the case x + y odd. Making use of equation (A.1), we obtain

T̂ (r)|)[0]
↑ 〉 = 1√

N
N−1∑

α1...αN−1=1

2N−2∑
β1...βN−1=N

N−1∏
a=1

T (r)a,αa

2N−2∏
b=N

T (r)b,βb

×
N−2∑
k=0

(−1)kfk

N−1∑
ik>···>i1=2

N−1∑
jk>···>j1=1

× Ŝ−
αik

. . . Ŝ−
αi1

Ŝ+
βjk

. . . Ŝ+
βj1

c
†
α1,↑ . . . c

†
αN−1,↑c

†
βN ,↓ . . . c

†
β2N−2,↓|0〉. (B.1)

The kth term in the sum of equation (B.1) gives non-vanishing scalar product only with the
kth term in equation (49) and hence

Y (r) = 1

N
N−1∑

α1...αN−1=1

2N−2∑
β1...βN−1=N

N−1∏
a=1

T (r)a,αa

2N−2∏
b=N

T (r)b,βb

N−2∑
k=0

f 2
k

{ N−1∑
mk>···>m1=2

N−1∑
ik>···>i1=2

× 〈0|cN−1,↑ . . . c1,↑Ŝ+
mk

. . . Ŝ+
m1

Ŝ−
αik

. . . Ŝ−
αi1

c
†
α1,↑ . . . c

†
αN−1,↑|0〉

}

×
{ 2N−2∑

nk>···>n1=N

N−1∑
jk>···>j1=1

× 〈0|c2N−2,↓ . . . cN,↓Ŝ−
nk

. . . Ŝ−
n1

Ŝ+
βjk

. . . Ŝ+
βj1

c
†
β1,↓ . . . c

†
βN−1,↓|0〉

}
. (B.2)

Now we use the fact that the indices α1, . . . , αN−1 must be all different and within the range
{1, . . . , N − 1}, otherwise the scalar product vanishes. This means that

N−1∑
ik>···>i1=2

Ŝ−
αik

. . . Ŝ−
αi1

c
†
α1,↑ . . . c

†
αN−1,↑|0〉

= εα1...αN−1

N−1∑
ik>···>i1=1,�=α1

Ŝ−
i1

. . . Ŝ−
ik

c
†
1,↑ . . . c

†
N−1,↑|0〉 + · · · (B.3)

where the neglected terms do not contribute to the scalar product. In the second row of
equation (B.2), c1,↑ commutes with all the raising spin operators whatever are the values of
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the k indices mk > · · · > m1 in the range specified by the sum. This implies that i1 cannot be
unity. On the other hand c†

α1
commutes with all the lowering spin operators and hence no one

of the indices mk > · · · > m1 can be α1 otherwise the corresponding term vanishes. Hence
the term in the second row gives

N−1∑
mk>···>m1=2,�=α1

N−1∑
ik>···>i1=2,�=α1

εα1...αN−1〈0|cN−1,↑ . . . c1,↑Ŝ+
mk

. . . Ŝ+
m1

Ŝ−
i1

. . . Ŝ−
ik

c
†
1,↑ . . . c

†
N−1,↑|0〉

=
[ N−1∑

ik>···>i1=2,�=α1

]
εα1...αN−1 . (B.4)

If k = N − 2 the sum is zero except for α1 = 1 since the indices ik > · · · > i1 do not have
space to run. Hence

N−1∑
ik>···>i1=2,�=α1

= δk,N−2δ1,α1 + (1 − δk,N−2)

[(
N − 3

k

)
+ δ1,α1

((
N − 2

k

)
−

(
N − 3

k

))]

= (1 − δk,N−2)

(
N − 3

k

)

+ δ1,α1

[
δk,N−2 + (1 − δk,N−2)

((
N − 2

k

)
−

(
N − 3

k

))]
(B.5)

while the third row of equation (B.2) yields

ε̃β1...βN−1

2N−2∑
nk>···>n1=N

2N−2∑
jk>···>j1=N

〈0|c2N−2,↓ . . . cN,↓Ŝ−
nk

. . . Ŝ−
n1

Ŝ+
jk

. . . Ŝ+
j1

c
†
N,↓ . . . c

†
2N−2,↓|0〉

= ε̃β1...βN−1

(
N − 1

k

)
(B.6)

as can be verified by using the total antisymmetry of each homogeneous polynomial in the
raising spin operators.

Therefore for even x + y one can write

Y (r) = 1

4
+

D

|Shf |2 + EC1,1(r)T (r)1,1 = 1

4
+

1

|Shf |2 [D + E × Thf (r)2], (B.7)

where D and E are two N -dependent constants given by

D = |Shf |2
N

[N−3∑
k=0

f 2
k

(
N − 1

k

) (
N − 3

k

)
− N

4

]
(B.8)

E = 1

N

{
(N − 1)f 2

N−2 +
N−3∑
k=1

f 2
k

(
N − 1

k

) [(
N − 2

k

)
−

(
N − 3

k

)]}
. (B.9)

For odd x + y we make use of equation (A.12). Then, the action of T̂ (r) over |)[0]
↑ 〉 gives

T̂ (r)|)[0]
↑ 〉 = 1√

N
2N−2∑

α1...αN−1=N

N−1∑
β1...βN−1=1

N−1∏
a=1

T (r)a,αa

2N−2∏
b=N

T (r)b,βb

×
N−2∑
k=0

(−)kfk

N−1∑
ik>···>i1=2

N−1∑
jk>···>j1=1

× Ŝ−
αik

. . . Ŝ−
αi1

Ŝ+
βjk

. . . Ŝ+
βj1

c
†
α1,↑ . . . c

†
αN−1,↑c

†
β1,↓ . . . c

†
βN−1,↓|0〉. (B.10)
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In the scalar product with the |)[0]
↑ 〉 state, only the terms with the same number of up (or down)

spins in the first N − 1 (and hence in the last N − 1) local states will survive. Let us consider
for example the kth term of the sum in the second row of equation (B.10); it contains states
where k of the last N − 1 local states have spin down and k of the first N − 1 local states have
spin up. This term has non-vanishing scalar product only with the (N − k − 1)th term of the
sum in the definition of |)[0]

↑ 〉, equation (49). In particular this implies that the terms where
the first and the last N − 1 local states have all the spins aligned do not contribute to the scalar
product. Hence

Y (r) = 1

N
2N−2∑

α1...αN−1=N

N−1∑
β1...βN−1=1

N−1∏
a=1

T (r)a,αa

2N−2∏
b=N

T (r)b,βb

N−2∑
k=1

fkfN−k−1

×
{ N−1∑

mN−k−1>···>m1=2

N−1∑
jk>···>j1=1

× 〈0|cN−1,↑ . . . c1,↑Ŝ+
mN−k−1

. . . Ŝ+
m1

Ŝ+
βjk

. . . Ŝ+
βj1

c
†
β1↓ . . . c

†
βN−1↓|0〉

}

×
{ 2N−2∑

nN−k−1>···>n1=N

N−1∑
ik>···>i1=2

× 〈0|c2N−2,↓ . . . cN,↓Ŝ−
nN−k−1

. . . Ŝ−
n1

Ŝ−
αik

. . . Ŝ−
αi1

c
†
α1,↑ . . . c

†
αN−1,↑|0〉

}
. (B.11)

Let us consider the term in the second row. For a given choice of β1 . . . βN−1 one finds
N−1∑

jk>···>j1=1

Ŝ+
βjk

. . . Ŝ+
βj1

c
†
β1↓ . . . c

†
βN−1↓|0〉

= εβ1...βN−1

N−1∑
jk>···>j1=1

Ŝ+
jk

. . . Ŝ+
j1

c
†
1,↓ . . . c

†
N−1,↓|0〉 + · · · , (B.12)

where the missed terms do not contribute to the scalar product. Since the c1,↑ annihilation
operator commutes with all the raising spin operators originating from the sum over mN−k−1 >

· · · > m1, j1 is constrained to be unity for all non-vanishing contributions. Still for
jk > · · · > j2 fixed there is only one choice for mN−k−1 > · · · > m1 to have non-
vanishing result. In particular, the possible results for a given choice of jk > · · · > j2

and mN−k−1 > · · · > m1 are zero or unity. Hence the term in the first square bracket yields

εβ1...βN−1

N−1∑
mN−k−1>···>m1=2

N−1∑
jk>···>j2=2

〈0|cN−1,↑ . . . c1,↑Ŝ+
mN−k−1

. . . Ŝ+
m1

Ŝ+
jk

. . . Ŝ+
j1

c
†
1,↓ . . . c

†
N−1,↓|0〉

= εq1...qN−1

(
N − 2
k − 1

)
. (B.13)

A similar trick can be used for the term in the third row of equation (B.11). We obtain
N−1∑

ik>···>i1=2

Ŝ−
αik

. . . Ŝ−
αi1

c
†
α1,↑ . . . c

†
αN−1,↑|0〉

= ε̃α1...αN−1

2N−2∑
ik>···>i1=N,�=α1

Ŝ−
ik

. . . Ŝ−
i1

c
†
N,↑ . . . c

†
2N−2,↑|0〉 + · · · . (B.14)

Since the c
†
α1,↑ creation operator commutes with all the lowering spin operators originating

from the sum over ik > · · · > i1, one of the indices nN−k−1 > · · · > n1 is constrained to be
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α1 and the third row of equation (B.11) can be rewritten as

ε̃α1...αN−1

2N−2∑
nN−k−1>···>n2=N,�=α1

2N−2∑
ik>···>i1=N,�=α1

×〈0|c2N−2,↓ . . . cN,↓Ŝ−
nN−k−1

. . . Ŝ−
n1

Ŝ−
ik

. . . Ŝ−
i1

c
†
N,↑ . . . c

†
2N−2,↑|0〉

=
(

N − 2
k

)
ε̃α1...αN−1 . (B.15)

Substituting these results in equation (B.11) one obtains

Y (r) = FN

|Shf |2 = 1

4
− 1

|Shf |2 [D + E × (4N − 4)] (B.16)

where we have taken into account that Det[T (r)] = −1 for odd x + y and the constant FN is
given by

FN = |Shf |2
N

N−2∑
k=1

fkfN−k−1

(
N − 2
k − 1

) (
N − 2

k

)
. (B.17)

In the last equality of equation (B.16) we have used FN = |Shf |2/4−D−E×(4N −4), which
is a direct consequence of the sum rule for the charge correlation function (see equation (81)).
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